skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Battisti, Roman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This dataset includes surface underway chemical, meteorological and physical data collected from Autonomous Surface Vehicle (ASV) Saildrone 1038 (EXPOCODE 316420220616) in the Indian Ocean, Southern Ocean from 2022-06-16 to 2022-07-26. These data include xCO2 SW (wet) - mole fraction of CO2 in air in equilibrium with the seawater at sea surface temperature and measured humidity; H2O SW - Mole fraction of H2O in air from equilibrator; xCO2 Air (wet) - Mole fraction of CO2 in air from airblock, 0.67m (26") above the sea surface at measured humidity; H2O Air - Mole fraction of H2O in air from airblock, 0.67m (26") above the sea surface; Atmospheric pressure at the airblock, 0.67m (26") above the sea surface; Atmospheric pressure at the airblock, 0.67m (26") above the sea surface; Temperature of the Infrared Licor 820 in degrees Celsius; MAPCO2 %O2 - The percent oxygen of the surface seawater divided by the percent oxygen of the atmosphere at 0.67m (26") above the sea surface; Sea Surface Temperature; Sea Surface Salinity; xCO2 SW (dry) - Mole fraction of CO2 in air in equilibrium with the seawater at sea surface temperature (dry air); xCO2 Air (dry) - Mole fraction of CO2 in air at the airblock, 0.67m (26") above the sea surface (dry air); fCO2 SW (sat) - Fugacity of CO2 in air in equilibrium with the seawater at sea surface temperature (100% humidity); fCO2 Air (sat) - Fugacity of CO2 in air at the airblock, 0.67m (26") above the sea surface (100% humidity); dfCO2 - Difference of the fugacity of the CO2 in seawater and the fugacity of the CO2 in air (fCO2 SW - fCO2 Air); pCO2 SW (wet) - Partial Pressure of CO2 in air in equilibrium with the seawater at sea surface temperature (100% humidity); pCO2 Air (wet) - Partial Pressure of CO2 in air at the airblock, 0.67m (26") above the sea surface (100% humidity); dpCO2 - Difference of the partial pressure of CO2 in seawater and air (pCO2 SW - pCO2 Air; pH of Seawater (total scale). The Autonomous Surface Vehicle CO2 (ASVCO2) instruments used to collect these data include Bubble type equilibrator for autonomous carbon dioxide (CO2) measurement, Carbon dioxide (CO2) gas analyzer, Humidity Sensor, and oxygen meter. 
    more » « less
  2. This dataset includes surface underway chemical, meteorological and physical data collected from Autonomous Surface Vehicle (ASV) Saildrone 1039 (EXPOCODE 316420220901) in the Indian Ocean, Southern Ocean from 2022-09-01 to 2023-04-27. These data include xCO2 SW (wet) - mole fraction of CO2 in air in equilibrium with the seawater at sea surface temperature and measured humidity; H2O SW - Mole fraction of H2O in air from equilibrator; xCO2 Air (wet) - Mole fraction of CO2 in air from airblock, 0.67m (26") above the sea surface at measured humidity; H2O Air - Mole fraction of H2O in air from airblock, 0.67m (26") above the sea surface; Atmospheric pressure at the airblock, 0.67m (26") above the sea surface; Atmospheric pressure at the airblock, 0.67m (26") above the sea surface; Temperature of the Infrared Licor 820 in degrees Celsius; MAPCO2 %O2 - The percent oxygen of the surface seawater divided by the percent oxygen of the atmosphere at 0.67m (26") above the sea surface; Sea Surface Temperature; Sea Surface Salinity; xCO2 SW (dry) - Mole fraction of CO2 in air in equilibrium with the seawater at sea surface temperature (dry air); xCO2 Air (dry) - Mole fraction of CO2 in air at the airblock, 0.67m (26") above the sea surface (dry air); fCO2 SW (sat) - Fugacity of CO2 in air in equilibrium with the seawater at sea surface temperature (100% humidity); fCO2 Air (sat) - Fugacity of CO2 in air at the airblock, 0.67m (26") above the sea surface (100% humidity); dfCO2 - Difference of the fugacity of the CO2 in seawater and the fugacity of the CO2 in air (fCO2 SW - fCO2 Air); pCO2 SW (wet) - Partial Pressure of CO2 in air in equilibrium with the seawater at sea surface temperature (100% humidity); pCO2 Air (wet) - Partial Pressure of CO2 in air at the airblock, 0.67m (26") above the sea surface (100% humidity); dpCO2 - Difference of the partial pressure of CO2 in seawater and air (pCO2 SW - pCO2 Air; pH of Seawater (total scale). The Autonomous Surface Vehicle CO2 (ASVCO2) instruments used to collect these data include Bubble type equilibrator for autonomous carbon dioxide (CO2) measurement, Carbon dioxide (CO2) gas analyzer, Humidity Sensor, and oxygen meter. 
    more » « less
  3. The field of oceanography is transitioning from data-poor to data-rich, thanks in part to increased deployment ofin-situplatforms and sensors, such as those that instrument the US-funded Ocean Observatories Initiative (OOI). However, generating science-ready data products from these sensors, particularly those making biogeochemical measurements, often requires extensive end-user calibration and validation procedures, which can present a significant barrier. Openly available community-developed and -vetted Best Practices contribute to overcoming such barriers, but collaboratively developing user-friendly Best Practices can be challenging. Here we describe the process undertaken by the NSF-funded OOI Biogeochemical Sensor Data Working Group to develop Best Practices for creating science-ready biogeochemical data products from OOI data, culminating in the publication of the GOOS-endorsed OOI Biogeochemical Sensor Data Best Practices and User Guide. For Best Practices related to ocean observatories, engaging observatory staff is crucial, but having a “user-defined” process ensures the final product addresses user needs. Our process prioritized bringing together a diverse team and creating an inclusive environment where all participants could effectively contribute. Incorporating the perspectives of a wide range of experts and prospective end users through an iterative review process that included “Beta Testers’’ enabled us to produce a final product that combines technical information with a user-friendly structure that illustrates data analysis pipelines via flowcharts and worked examples accompanied by pseudo-code. Our process and its impact on improving the accessibility and utility of the end product provides a roadmap for other groups undertaking similar community-driven activities to develop and disseminate new Ocean Best Practices. 
    more » « less